Sodium intake determines the role of adenosine A2 receptors in control of renal medullary perfusion in the rat.

نویسندگان

  • Leszek Dobrowolski
  • Elzbieta Kompanowska-Jezierska
  • Agnieszka Walkowska
  • Janusz Sadowski
چکیده

BACKGROUND In the kidney, adenosine (ADO) can induce either vasoconstriction or vasodilatation, mediated by A1 or A2 receptors, respectively. The vasodilator influence may be of special importance in the renal medulla which operates at low tissue pO(2) levels and is susceptible to ischaemic damage. It has not been established if ADO induced vasodilatation is modified by salt intake. METHODS We examined effects of stimulation or inhibition of ADO receptors (A2R) on perfusion of the renal cortex and medulla on low- or high- sodium intake (LS, HS). Effects of suprarenal aortic ADO (0.03 mmol/kg/h), A2R agonist (DPMA), 0.08-0.4 mmol/kg/h, or antagonist (DMPX), 1.7 micromol/kg/h, were examined in anaesthetized rats maintained on LS (0.15% Na) or HS (4% Na) diet for 3 weeks. Whole kidney blood flow (RBF) and the perfusion (laser-Doppler) of the superficial cortex and outer and inner medulla (OM-BF, IM-BF) were measured. RESULTS In LS rats neither drug changed renal perfusion. In HS rats ADO increased RBF 18 +/- 3%, OM-BF 16 +/- 7% and IM-BF 16 +/- 6%. IM-BF increased after DPMA 18 +/- 5% and decreased after DMPX 13 +/- 3%; neither drug consistently changed perfusion of the cortex. CONCLUSIONS On HS intake, medullary perfusion is controlled by ADO vasodilator (A2) receptors, which may help provide adequate oxygen to the medulla, the zone which normally operates under relative hypoxia. On LS intake, the vasodilator and vasoconstrictor effects are probably in balance and ADO has little role in control of intrarenal circulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of imipramine and desipramine on adenosine receptors in isolated rat atria

  The effect of different doses (1-50 µ M) of imipramine (IMI) and desipramine (DES) on the rate and force of contraction of isolated rat atria was studied. IMI and DES produced a dose-dependent increase in force of contraction (31- 94% for IMI and 35-118% for DES). Pretreatment of rats with reserpine (5 mg/kg) on the isolated atria with propranolol (1 µ g) inhibited the positive ionotropic eff...

متن کامل

Role of renal medullary adenosine in the control of blood flow and sodium excretion.

This study determined the levels of adenosine in the renal medullary interstitium using microdialysis and fluorescence HPLC techniques and examined the role of endogenous adenosine in the control of medullary blood flow and sodium excretion by infusing the specific adenosine receptor antagonists or agonists into the renal medulla of anesthetized Sprague-Dawley rats. Renal cortical and medullary...

متن کامل

Role of adenosine receptors and protein phosphatases in the reversal of pentylenetetrazol-induced potentiation phenomenon by theta pulse stimulation in the CA1 region of rat hippocampal slices

The effect of theta pulse stimulation (TPS) on pentylenetetrazol (PTZ)-induced long-term potentiation of population spikes (PS) was studied in the hippocampal CA1 in vitro. A transient PTZ application produced a long-lasting enhancement of PS amplitude. A 3-min episode of TPS delivered at a higher intensity produced complete reversal of the PTZ potentiation when delivered during the last minute...

متن کامل

The role of adenosine A2 receptors in regulation of pial vessels blood flow in anesthetized morphine dependent rats.

Introduction:Adenosine as a potent vasodilator has physiological role in regulation of regional cerebral blood flow (rCBF). Metod: Laser-Dِoppler flowmetry technique was used to study pial vessels blood flow responses to adenosine receptors agonists and antagonist. Male Sprague Dawley rats (250-350g) that were housed in standard conditions, were anesthetized with Urethane (1.5g/kg). Adenosine ...

متن کامل

CEREBRAL BLOOD FLOW REGULATION IN ANESTHETIZED MORPHINE DEPENDENT RATS: THE ROLE OF THE ADENOSINE SYSTEM

Adenosine has many of the characteristics of a regulator of cerebral blood flow and adenosine receptors change in morphine dependency. In this study the changes in adenosine receptors' responsiveness of pial vessels in the hind limb area of the sensory cortex were evaluated in morphine dependent rats (MDR) using the laser Doppler flowmetry technique. Adult male Sprague Dawley rats (250-350 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association

دوره 22 10  شماره 

صفحات  -

تاریخ انتشار 2007